Jumat, 13 Januari 2012

LANDASAN TEORI
1. Mekanisme Katup
Proses pembakaran gas pada mesin 4 langkah dikendalikan oleh mekanisme katup. Mekanisme katup merupakan suatu mekanisme dalam engine yang memiliki tugas untuk mengatur open-close engine valve (buka-tutup katup) saluran masuk dan buang pada ruang bakar sebuah engine (motor bakar).
Struktur kerja mekanisme katup dan urutan kerja dimulai saat poros engkol berputar, maka akan mengakibatkan berputarnya camshaft yang dihubungkan melalui timing chain dan roda gigi/sprocket. Camshaft akan menggerakan rocker arm dan rocker arm akan menekan batang katup sehingga terjadi pergerakan katup.
Gambar Mekanisme Katup

a. Katup
Katup berfungsi sebagai pintu gerbang pemasukan bahan bakar dan pembuangan gas sisa pembakaran, yang mana waktu pembukaan dan penutupan katup-katup tersebut diatur sesuai dengan prinsip kerja mesin. Kontruksi katup terdiri dari kepala katup (valve head), batang katup (valve stem) berbentuk seperti jamur. Bagian katup yang berhimpit disebut permukaan katup (valve face) yang dibuat miring sesuai dengan kemiringan permukaan dudukan katup. Kepala katup atau daun katup, pada katup hisap berdiameter lebih besar dibandingkan dengan katup buang, karena perbedaan tekanan antara gas yang masuk kedalam silinder dan gas yang keluar dari dalam silinder. Katup hisap mengandalikan perbedaan tekanan udara luar dengan penurunan tekanan dalam silinder yang disebabkan oleh hisapan torak, sedangkan pada katup buang gas bekas pembakaran akan keluar dari silinder dengan tekanan sisa pembakaran sehingga cukup kuat untuk mendorong gas bekas pembakaran keluar dari silinder. Disamping itu juga dimaksudkan agar pemasukan bahan bakar udara lebih sempurna.




Gambar Katup

b. Dudukan katup
Dudukan katup berfungsi sebagai tempat dudukan kepala katup. Antara kepala katup dengan dudukan katup harus membuat persinggungan yang rapat agar tidak terjadi kebocoran gas pada saat kompresi atau kerja. Sudut kemiringan persinggungan katup dengan dudukan katup untuk katup masuk dan katup buang adalah 45ยบ, lebar persinggungan katup dengan dudukan katup dimaksudkan agar ekanan katup dan dudukan katup dapat sebesar mungkin, agar persinggungan katup dengan dudukan katup tidak mudah terbakar dan tidak mudah terselip kotoran yang menyebabkan kebocoran gas pada langkah kompresi atau kerja.

Gambar Dudukan Katup
c. Pengantar katup/bos katup
Pemasangan pegas katup belum tentu menjamin katup tersebut akan baik kedudukannya, agar katup dapat stabil pada kedudukannya, baik pada saat menutup ataupun saat membuka, maka katup dilengkapi dengan penghantar katup (valve guide) atau bos katup.

d. Pegas katup
Fungsi dari pegas katup yaitu untuk mengembalikan katup agar tetap dalam keadaan rapat-rapat dalam kedudukannya. Telah diketahui bahwa kerja katup adalah membuka dan menutup disesuaikan dengan langkah torak. Pada saat membuka, katup digerakan oleh sumbu nok dan pada saat menutup katup digerakan oleh pegas katup. Jumlah pegas yang dipasang pada sebuah katup ada yang satu katup dan ada yang dua buah.

Gambar Pegas Katup

e. Rocker arm
Rocker arm dipasang pada rocker shaft. Bila rocker arm ditekan keatas oleh poros hubungan, katup akan tertekan dan membuka. Rocker arm dilengkapi dengan sekrup dan mur pengunci untuk penyetelan katup.

Gambar Rocker arm

f. Poros engkol
Poros engkol berfungsi mengubah gerak torak menjadi gerakan putar dan meneruskan gaya tersebut ke alat pemindah tenaga sampai ke roda.

g. Camshaft
Camshaft atau poros bubungan atau poros nok berfungsi untuk mengatur membuka dan menutupnya katup hisap maupun katup buang pada kepala silinder. Camshaft berputar lebih lambat dari poros engkol karena jumlah gigi sprocket poros bubungan dua kali lebih banyak dari pada jumlah gigi sprocket poros engkol.

h. Timing chain
Timing chain berguna untuk menghubungkan gigi poros engkol dengan gigi camshaft, sehingga putaran poros engkol dapat diteruskan ke camshaft dan terjadilah persesuaian antara gerak naik turunnya piston dengan terbuka dan tertutupnya katup dalam melakukan proses kerja. Roda gigi/sprocket adalah roda gigi berfungsi menerima putaran dari gigi poros engkol dan meneruskannya ke camshaft.

2. Mekanisme Kerja Camshaft
Camshaft atau sering disebut poros bubungan atau poros nok adalah sebuah alat yang digunakan dalam mesin torak untuk menjalankan valve poppet (buka tutup katup). Bentuk camshaft berupa batangan silinder dengan panjang tertentu yang memiliki bentuk khusus dan terdapat beberapa tonjolan landai seperti telur pada badannya yang disebut cam atau biasa juga disebut lobe atau bubungan. Bagian yang bernama cam/lobe inilah yang akan bertugas menggerakkan katup mesin sehingga mampu membuka lubang masuk dan keluar ruang bakar mesin dan waktu buka-tutup inilah yang dapat mempengaruhi tenaga pada sebuah mesin. Tiap pabrikan mesin mobil membuat bentuk sebuah camshaft yang berbeda-beda, meskipun itu original, terutama pada bagian lobe-nya. Oleh karena itu setiap jenis mesin pada mobil dari berbagai merk, pastinya memiliki tenaga dan torsi yang berbeda-beda pula.


Gambar Camshaft

Gambar Cam/Bubungan


Hubungan antara perputaran camshaft dengan perputaran poros engkol sangat penting. Karena katup mengontrol aliran masukan bahan bakar dan pengeluaran, mereka harus dibuka dan ditutup pada saat yang tepat selama stroke piston. Untuk alasan ini, camshaft dihubungkan dengan crankshaft secara langsung, atau melalui mekanisme "gear", atau secara tidak langsung melalui rantai yang disebut rantai waktu. Dalam beberapa rancangan camshaft juga menggerakkan distributor, minyak dan pompa bahan bakar. Juga dalam sistem injeksi bahan bakar dahulu, cam di camshaft akan mengoperasikan penginjeksi bahan bakar tersebut.
Dalam sebuah mesin dua-langkah yang menggunakan sebuah camshaft, setiap valve membuka sekali untuk setiap rotasi crankshaft; dalam mesin ini, camshaft berputar pada kecepatan yang sama dengan crankshaft. Dalam mesin empat langkah, katup-katup akan membuka setengah lebih sedikit, oleh karena itu dua putaran penuh crankshaft terjadi di setiap putaran camshaft.
Tergantung lokasi dari camshaft tersebut, cam menggerakkan katup secara langsung ataupun melalui hubungan antara pushrods dan pelatuk katup. Cara kerja yang langsung menghasilkan mekanisme sederhana dan kesalahan yang sedikit, tetapi camshaft harus diposisikan di atas silinder. Dahulu, ketika mesin tidak secanggih sekarang, kelihatannya mekanisme tersebut sangat mengganggu, akan tetapi di era mesin modern, sistem cam overhead, dimana camshaft di atas cylinder head, adalah sangat umum. Beberapa mesin menggunakan satu camshaft untuk setiap katup masukan dan katup keluaran; sama dengan yang dikenal sebagai double atau dual overhead cam (DOHC) atau cam ganda yang ditempatkan di atas silinder, lalu sebuah V Engines membutuhkan empat camshaft.
Gear Valve Timing pada sebuah mesin Ford Taunus V4 gear yang kecil ada di crankshaft, gear yang lebih besar ada pada camshaft. Perbandingan gear menyebabkan camshaft bekerja setengah RPM dari crankshaft. Gesekan luncur antara bagian muka cam dengan follower tergantung kepada besarnya gesekan. Untuk mengurangi aus ini, cam dan follower mempunyai permukaan yang keras, dan minyak pelumas modern mengandung bahan yang secara khusus mengurangi gesekan luncur. Lobe (daun telinga) dari camshaft biasanya meruncing, mengakibatkan follower atau pengangkat katup berputar sedikit dalam setiap tekanan, dan membuat aus komponen. Bagian muka dari cam dan follower dirancang untuk aus bersamaan, jadi ketika salah satu telah aus maka keduanya harus diganti untuk mencegah aus yang berlebihan.
Selain gesekan mekanik, dorongan besar juga diperlukan untuk mengatasi pegas katup yang selalu mendekati katup mesin. Hal ini akan mengakibatkan 25% dari keluaran total mesin menjadi kosong, mengurangi efisiensi keseluruhan. Ada dua pendekatan yang telah dicoba untuk mengatasi energi yang terbuang tersebut, akan tetapi nyatanya sulit untuk diterapkan.


PROSES PEMILIHAN MATERIAL DAN MANUFAKTUR
1 Metode Pemilihan Material
Secara garis besar material dibagi dalam beberapa kelompok besar. Fungsi yang spesifik dari material bisa di tentukan apabila induk materialnya sudah di ketahui. Setiap material mempunyai struktur, mechanical properties, physical properties, dan modification properties yang berbeda-beda.


Gambar Klasifikasi material

Tabel Mechanical Properties


Tabel Physical Properties

Dalam pengembangan sebuah model (part) baru pasti akan diikuti oleh beberapa pertanyaan seperti : Benda seperti apa itu? Apa fungsinya? dan bagaimana cara kerja mesin itu?. Untuk menjawab semua pertanyaan itu diperlukan penetapan sifat-sifat kerja dari part yang sesuai dengan desain, kemampuan material yang digunakan secara garis besar dan proses yang akan digunakan. Cara ini bisa dilakukan untuk menyaring kelas material dan proses mana yang akan digunakan.
Pemilihan dari kemampuan material dibagi menjadi 5 kategori yaitu :
1. Sifat operasi (functional requirement) dari part
Sifat operasi berhubungan langsung dengan karakteristik dari pembebanan yang diterima part secara langsung. Apakah part itu menerima beban gesek, beban tarik, beban geser, beban kejut, dll.
2. Kondisi operasi part (resistance to service condition)
Kondisi lingkungan tempat beroperasi mempunyai peran yang sangat penting dalam menentukan suatu material. Contohnya lingkungan yang memungkinkan terjadinya korosi, seperti lingkungan bertemperatur rendah, berdampak merugikan bagi kebanyakan material.
3. Kemampuan Proses (process ability requirement)
Kemampuan proses suatu material bisa dinilai dari kemampuan part tersebut untuk dikerjakan dan dibentuk menjadi barang jadi. Contohnya part tersebut memiliki sifat castability, formability, machinability, weldability, dan hardenability.
4. Cost
Harga biasanya menjadi faktor penting dalam evaluasi material karena tidak sedikit aplikasi yang mempunyai batasan budget. Penentuan harga biasanya dibandingkan dengan aplikasi yang akan di gunakan.
5. Ketahanan uji (reliability requirement)
Ketahanan uji bisa diartikan kemungkinan akan ketahanan suatu material terhadap fungsi tanpa adanya kerusakan atau kegagalan proses.



2 Proses Pemilihan Material
a. Analisis Produk 
Dari bab sebelumnya sudah dijelaskan bahwa proses pembakaran gas pada engine dikendalikan oleh mekanisme katup. Mekanisme katup merupakan suatu mekanisme dalam engine yang memiliki tugas untuk mengatur open-close engine valve (buka-tutup katup) saluran masuk dan buang pada ruang bakar sebuah engine (motor bakar).
Camshaft merupakan salah satu kompenen dalam system mekanisme katup. Camshaft bertugas untuk mengatur membuka dan menutupnya katup hisap maupun katup buang pada kepala silinder. Dalam proses kerjanya, camshaft berputar seiring dengan putaran mesin. Camshaft berputar lebih lambat dari poros engkol karena jumlah gigi sprocket poros bubungan dua kali lebih banyak dari pada jumlah gigi sprocket poros engkol. Cam atau lobe merupakan bagian dari camshaft yang akan membuka dan menutup katup. Cam sendiri berbentuk seperti telur dimana pada saat katup menyentuh bagian yang paling lonjong, maka katup akan terbuka. Dan apabila katup bertemu dengan bagian yang paling datar maka katup akan terbuka.
Berdasarkan hal diatas, maka untuk menentukan material camshaft harus mempertimbangkan hal-hal sebagi berikut :
Tahan putaran tinggi
Material camshaft haruslah yang tahan putaran tinggi karena dalam melakukan tugasnya, camshaft berputar dengan kecepatan tinggi.
Tahan gesekan / aus
Untuk membuka dan menutup katup, terjadi kontak langsung antara cam/lobe dengan katup. Oleh sebab itu material yang dipilih haruslah tahan terhadap gesekan/aus.
Tahan panas
Camshaft merupakan bagian dari suatu engine dimana terjadi pembakaran dan menimbulkan panas. Oleh sebab itu material yang dipilih merupakan material yang tahan terhadap panas.
Tahan defleksi
Ductile 
Efisiensi, durability, environment, manufacturability 
Harga
Dibawah ini adalah tabel daftar kebutuhan dan gambar hirarki kebutuhan yang dinginkan untuk menentukan material camshaft.
Tabel Tabel Kebutuhan Dalam Menentukan Material Camshaft

Gambar Diagram kebutuhan untuk camshaft

b. Kondisi Pembebanan Pada Camshaft Dan Perhitungan 
Shaft adalah elemen mesin berputar yang digunakan untuk memindahkan gaya dari satu tempat ke tempat lain 
Gaya yang dialami shaft : 
1. Gaya tangensial 
2. Torsi resultan (momen puntir) 
Stress pada camshaft : 
1. Shear stress (pada nouse lobe) 
2. Kombinasi beban torsi dan bending 
Shaft yang mengalami beban fluktuatif yaitu momen torsi (T) dan momen bending (M), maka momen torsi ekivalen adalah :
T_e=√(〖(K_m×M)〗^2+〖(K_t+T)〗^2 )
Momen bending ekivalen 
M_e=1/2 [K_m×M+√(〖(K_m×M)〗^2+〖(K_t×T)〗^2 )]
Dimana : 
Km = kombinasi kejut dan faktor fatik untuk bending 
Kt = kombinasi kejut dan faktor fatik untuk torsi

Tabel Faktor pembebanan pada shaft

Gambar Camshaft




















Tidak ada komentar:

Posting Komentar